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COMPOSITIONS, ORIGINS, EMISSION RATES AND ATMOSPHERIC

IMPACTS OF VOLCANIC GASES!

Robert B. Symonds

INTRODUCTION

Since the 18th Century, when Benjamin Franklin (1784) suggested that the 1783 Laki
eruption in Iceland triggered an abnormally cold winter in 1783-4, many authors have noted a
link between volcanic eruptions and short periods of cooler climate. At first, some linked the
cooling to the large quantities of ash or dust injected into the atmosphere (Lamb, 1970). Now we
know that injection of large quantities of volcanic sulfur gases (SO, and H,S) into the
stratosphere and the subsequent production of sulfuric acid aerosols generate volcanic climate
forcing. This paper reviews recent research on the compositions, origins, emission rates, and

atmospheric impacts of volcanic gases, and suggests possible avenues for future work.

COMPOSITIONS AND ORIGINS OF VOLCANIC GASES

Passively degassing and erupting volcanoes discharge magmatic gases and steam-rich
gases from boiling meteoric and hydrothermal fluids into the atmosphere. Of these potential
sources, degassing magma furnishes most of the volcanically derived pollutants (e.g., CO,, SO,,
HCI, and HF). Under rare circumstances, these magmatic gases can be sampled directly from
>500°C volcanic vents or fumaroles and brought back to the laboratory for analysis (Symonds et

al., 1994). Results show that these high-temperature volcanic gases are dominated by H,0, CO,
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and SO, with lesser amounts of H,, H,S, HCI, HF, CO, S,, COS, Ny, rare gases and a number of
trace-metal species (e.g., CuCl, NaCl, H,MoOQ,, PbS, Hg) (Giggenbach and Matsuo, 1991;
Symonds et al., 1994; Symonds and Reed, 1993). Several examples of high-temperature
volcanic gases from terrestrial volcanoes are given in Table 1. These are some of the best
available data because they represent equilibrium compositions at the reported temperatures. A
more complete compilation of high-temperature volcanic gases in equilibrium is summarized by
Symonds et al. (1994). The wide variation in the compositions of volcanic gases reflects
variations in the tectonic setting, magma composition, degassing state of the magma, and the
temperature and pressure of equilibration.

Table 1. Selected compositions of high-temperature volcanic gases from terrestrial volcanoes.

Concentrations of species reported in mole%.
Volcano (Ref.) T (°C) H,O Hjp COy CO SOy HyS S HCl HF COS

Mt. St. Augustine’ 743 96.83 0.54 149  0.0060 0.22 038 - 051 0.025
Erta’ Ale? 1130 7724 139 1126 044 8.34 0.68 021 042  -—  0.0016
Mt. Etna® 1075 4726 051 2606 054 2518 020 0.21

Mt. St. Helens* 710 98.6 039 0.886 0.0023 0.067 0.099 0.0002 0.076 0.03 1.8E-05
Kilauea® 1170 37.09 049 4890 151 11.84 004 0.02 008  ---
Kilauea® 997 81.6 09929 3.80 0.0702 120 0.761 0.358 0.171 020 0.0016
G. Merapi’ 915 88.87 154 7.07  0.16 1.15 1.12 008 059 0.04
Nyiragongo® 970 4350 1.29 4855 220  2.02 172 0.62 — 0.09 0.0016
Poas’ 989 96.29 0.5240 0.7768 0.0066 1.511 0.0131 --- 0784 0.091 7.1E-08

Showa-Shinzan'® 1015 98.04 0.63 12  0.0129 0.043 0.0004 2.6E-07 0.053 0.024
Surtsey'! 1125 81.13 280 929 069  4.12 0.89 0.25 -~ 0.0016
Usu'? 659 958 0273 3.024 0.00440 0.258 0.609 0.0052 0.0241 0.0116 0.00032

--- not determined or below detection; 'Sample Spine-1A (collected 7/6/89) from Symonds, Gerlach and Iven
(unpublished); Sample 910 (collected 1/23/74) from Giggenbach and Le Guern (1976) and Gerlach (1980b);
3Sample #10 from hornito 2 (collected 7/12/70) from Huntingdon (1973) and Gerlach (1979); *Sample CNR
(collected 9/17/81) from Gerlach and Casadevall (1986); 5Sample J8 (collected 3/25/18) from Shepherd (1921),
Jagger (1940), and Gerlach (1980a); 6Sample Pele 4 (collected 1/14/83) from Gerlach (1993); ’Sample Mer 79-2
(collected in 1979) from Le Guern et al. (1982); 8Sample 2 (collected in 1959) from Chaigneau et al. (1960) and
Gerlach (1980d); *Sample P44 (collected 6/19/81) from Delorme (1983) and Rowe (1991); '°Sample from the A-1
vent (collected 9/8/54) from Nemoto et al. (1957) and Symonds et al. (1996); llSample 12 (collected 10/15/64) from
Sigvaldason and Elisson (1968) and Gerlach (1980c); 12Sample 11 (collected 9/1/79) from Matsuo et al. (1982) and
Gerlach (unpublished).

Subaerial explosive eruptions inject these magmatic gases directly into the atmosphere.
However, at passively degassing subaerial volcanoes, magmatic gases sometimes interact with

meteoric or hydrothermal water within the edifice of the volcano (Figure 1). Discharged gases



from submarine volcanoes also interact with seawater. These magmatic gas-water interactions
trigger a series of scrubbing and precipitation reactions that may mask degassing of some or all
species depending on (1) their water solubilities—SQO,, HCI, and HF are more soluble in water

than CO, and H,S— and (2) the gas-water ratio (Symonds and Gerlach, 1998).
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Figure 1. Schematic diagram showing how interactions between magmatic gases and meteoric
or hydrothermal water within the edifice of a degassing volcano can alter the compositions of
volcanic discharges.

Magmatic gas-water interactions greatly reduce the atmospheric impact of worldwide
volcanic emissions, especially those from submarine volcanism. The gases discharging from
mid-ocean ridges and other submarine volcanic activity, which currently supplies 80% of the
magma to the earth’s crust (Crisp, 1984), are mostly dissolved in the oceans. For example,
although submarine volcanism emits 31-66 Mt y'I of CO; or about half of the global volcanic
emissions (Gerlach, 1991), virtually none of this CO, makes it to the atmosphere. Moreover,
gas-water interactions clearly reduce or sometime eliminate magmatic gas emissions (e.g.,
especially SO,, HCI, and HF) from many passively degassing subaerial volcanoes in repose

between eruptions, although quantification of this process requires further study.



VOLCANIC EMISSIONS

To understand the impact of volcanic gases on the atmosphere, we need estimates of
emission rates of the major species from present-day passively degassing and erupting
volcanoes, and from large prehistorical eruptions that represent potential worst-case scenarios for
future eruptions. Emissions of gases from presently degassing volcanoes can be measured
remotely by airborne or ground-based methods, or by satellite. They can also be determined by
direct sampling and profiling of volcanic plumes. Satellite methods work best for large
explosive eruptions, whereas airborne and ground-based techniques work well for passively
degassing volcanoes or for small eruptions where plumes fail to penetrate the tropopause. Due to
available technology and gas-radiation absorption properties, the easiest volcanic-gas emission
rate to measure is for SO; this can be determined remotely by airborne or ground-based
techniques using the Correlation Spectrometer (COSPEC; Stoiber et al., 1983) and by satellite
platforms equipped with the Total Ozone Mapping Spectrometer (TOMS; Krueger, 1983;
Symonds et al., 1994). CO, emission rates can also be determined well using LI-COR
technology, although this requires using a direct sampling and profiling approach that may limit
its use under certain conditions (e.g., ash-laden plumes) (Gerlach et al., 1997). Fourier
Transform Infrared Spectroscopy (FTIR) is an established technology just now showing promise
in measuring emission rates of volcanic SO,, HCI, and SiF, (Francis et al., 1998; McGee and
Gerlach, 1998). Clearly, emissions of many volcanic-gas species cannot yet be measured
directly. When emission rates of volcanic-gas species cannot be determined using direct
instrumental techniques, they can be estimated using the emission rate of an easily determined

species (e.g., SO,) and compositional data on gas discharges (e.g., Table 1).



Unfortunately, determining gas emissions from eruptions before 1978 (e.g., pre-TOMS)
is more difficult. Yet compared with eruptions this century, some prehistoric eruptions expelled
colossal amounts of magma implying large stratospheric sulfur injections and huge climatic
implications. The main methods to estimate volatile emissions from pre-1978 eruptions, both of
which are often unsatisfactory, include determining the erupted volatile contents from petrologic
studies of pre-erupted and erupted magma (the petrologic method; Devine et al., 1984) and
measuring the volatile components in ice cores (Hammer et al., 1980). Although the petrologic
method works well for basaltic eruptions where pre-eruption sulfur dissolves in the melt
(Thordarson and Self, 1996), it underestimates the SO, released from many explosive eruptions
involving evolved magmas (andesites, dacites, rhyolites) because these magmas are often gas-
saturated prior to eruption (Gerlach et al., 1996; Scaillet et al., 1998). Ice-core estimates also
suffer from serious problems including difficulties of determining the volcanic aerosol
component in the core, high variability between cores even from the same area, dating
uncertainties, and inconsistent snow deposition (Robock and Free, 1995). But recently some of
these problems have been minimized by calibrating pre-1850 layers in ice cores with 1850-
present optical depth data (Zielinski, 1995).

Table 2 gives examples of emission rates from passively degassing and erupting
volcanoes, and estimates of the annual global volcanic emissions of CO,, SO,, HCI] and HF.
Although most of the emission rates represent only the past 20 years of degassing, the table also
includes some data from prehistoric eruptions to demonstrate the magnitude of rare cataclysmic
eeruptions. Of course, SO, emission rates, especially from stratosphere-penetrating explosive
volcanic eruptions (SPEVE), are most critical in determining the atmospheric impact of volcanic

emissions. Although there are good TOMS measurements of SO, emissions for individual



SPEVE during the past 20 years (e.g., Table 2), it is much more difficult to quantify the annual

SO; emission rate from SPEVE; some of the current estimates are 1.0 Mt (Pyle et al., 1996), 1.7

Mt (Stoiber et al., 1987), and 2.4 Mt (Bluth et al., 1993).

Table 2. Estimates of volcanic contributions of CO,, SO,, HCI, and HF to the atmosphere from

individual volcanoes and from all present-day subaerial volcanoes.

Volcano and Reference | CO, | SO, | HCl ] HF
Eruptive Degassing Emission Rates (Mt/eruptive event)
Rosa flood basalt (14 Ma)' 12,420 710 1780
Toba (74 ka)” 6500
Pinatubo (6/15/91)° 42 17 3
El Chichén (4/4/82)* 7
Mount St. Helens (5/18/80)" -— 1.0 — ——
Passive Degassing Emission Rates (t/day)
Mount Etna (1975-87)° 63000 4000 1300 160
Popocatépetl (1/5/95 - 1/10/95)° | 9000 3100
Oldoinyo Lengai (6/94)’ 6600 8.0 1.5 0.54
Mount St. Helens® 4800 400 — -
White Island’ 1800 620 190 5
Kilauea (2/13/84)" 1300 220
Global Volcanic Emission Rates (subaerial volcanism; Mt/year)
Williams et al. (1992) 64 — — —
Gerlach (1991) 86 — — —
Graf et al. (1997) - 28 — —
Bluth et al. (1993) -—- 13 - —
Stoiber et al. (1987) -—- 18.7 - ——
Berresheim and Jaeschke (1983) --- 15.2 - ——
Symonds et al. (1988) - --- 04-11 0.06 - 6

- not determined; 'Data for the Rosa member of the Columbia River Basalt Group (Thordarson and

Self, 1996); SO, emissions estimated from the H,SO, emission rate of Chesner et al. (1991); *Data from Gerlach et
al. (1996), Bluth et al. (1992), Read et al. (1993), McPeters (1993); 4502 emission rate recalculated by Bluth et al.
(1997) using version 6 of the TOMS algorithm.; *Average CO, and SO, emission rate for the 1975-87 period from
Allard et al. (1991), assuming that 44% of the total CO, emissions are from diffusive degassing, and HCI and HF
emission rates for July 1987 from Andres et al. (1993); *Best estimate of average SO, and CO,; emission rates for
January 5-10, 1998 from Gerlach et al. (1997); 7Koepenick et al. (1995).; 8Average CO, and SO, emission rates for
July 1980 to September 1981 from McGee and Casadevall (1994); *Rose et al. (1986) '°Greenland et al. (1985).



ATMOSPHERIC IMPACTS

Emissions from SPEVE produce greater atmospheric impacts than tropospheric emissions from
smaller explosive eruptions and passively degassing volcanoes that are removed rapidly by
precipitation. But some speculate that tropospheric emissions from voluminous flood basalt
eruptions may also cause significant climatic effects due to the shear volume of gas emissions
(Thordarson and Self, 1996). Figure 2 summarizes the atmospheric impacts of large explosive
eruptions. These eruptions inject gases (e.g., table 1) and ash 15 to 40 km above the Earth’s
surface into the stratosphere. The most significant consequence of these stratospheric volcanic
emissions is the conversions of SO, to sulfuric acid aerosols. The total volume of injected
aerosols and their average size affect their ability to scatter, both elastically and inelastically,
short-wavelength (visible) solar radiation and long-wavelength (infrared) terrestrial radiation and
hence, their capacity to alter the radiation balance of the atmosphere (Lacis et al., 1992). Due to
their small size, volcanic aerosols are better at backscattering incoming visible radiation (e.g.,
increasing albedo) than at absorbing outgoing infrared radiation which results in net tropospheric
cooling (Minnis et al., 1993). For instance, the 15 June 1991 eruption of Mount Pinatubo
resulted in global cooling of about 0.5°C for a few years after the eruption (Hansen et al., 1992).
In addition to producing tropospheric cooling, volcanic aerosols also warm the
stratosphere by absorbing solar and terrestrial radiation (Newell, 1970; Angell, 1993).
Moreover, in a manner similar to polar stratospheric clouds (Solomon, 1990), volcanic aerosols
form active surfaces for complex heterogeneous reactions between various stratospheric nitrogen
and chlorine species; these reactions promote the destruction of ozone by converting inert
stratospheric Cl species, elevated by anthropogenic chlorofluorocarbons, into ozone-destroying

ClO (Hofmann et al., 1994). With time, the sulfuric acid aerosols coagulate and descend to the



upper troposphere where they form cloud condensation nuclei for cirrus clouds; these may
further alter the atmosphere’s radiation balance, although determining their effect on climate

requires more work (Sassen, 1992).
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Figure 2. Schematic diagram showing the main atmospheric effects of large explosive eruptions
that penetrate the stratosphere. After McGee et al. (1997).

Large explosive eruptions may also release significant amounts of the greenhouse gas,
CO,, although the average annual volcanic CO, emissions estimated at 86 MT y' are dwarfed by
the anthropogenic CO, emissions of 26,000 MT y™' (Gerlach, 1991). Stratospheric-penetrating
eruptions also sometimes discharge significant amounts of HCI and HF (Table 2). Past studies
(Johnston, 1980; Symonds et al., 1988) suggest that stratospheric HCI injection by large volcanic
eruptions could enhance global ozone destruction, but recent work by Tabazadeh and Turco
(1993) suggests that most of the HCI in eruption plumes is removed prior to stratospheric
injection by dissolution in condensed supercooled water droplets followed by precipitation or

scavenging by falling ash particles. HF might also be removed by similar processes.



DIRECTIONS FOR FUTURE WORK

Although the past twenty five years produced many advances in estimating volcanic gas
contributions to the atmosphere, we still have several remaining hurdles. Future work on
volcanic emissions should focus on three key areas: (1) Developing new technologies for remote
measurements of CO,, H,S, HCI, and HF. Currently, CO, emission rates can be measured with
LI-COR technology, which requires direct plume sampling and profiling. Although emissions of
HCI and HF can sometimes be estimated by combining plume data on HCI/SO, and HF/SO, with
COSPEC SO, emission rates, instrumental methods are unavailable for measuring H,S and HF,
and FTIR methods for HCI are still maturing. Remote measurements of CO,, H,S, HCI, and HF
emissions are much preferred because direct sampling of plumes is not always possible,
especially during eruptions when emission rates are at their highest levels. (2) Improving the
volcanic emissions database; this includes measuring emissions for new species as well as from
new volcanoes. Until recently, most volcanic emission-rate studies have focused on measuring
SO, emissions. But for understanding the atmospheric impact of volcanic emissions, it is also
important to obtain data for CO,, H,S, HCI, and HF. We also need to make new and existing
technologies widely available to all countries that have degassing volcanoes. (3) Obtaining more
reliable and complete data on emissions from large eruptions, especially prehistoric eruptions
that are several orders of magnitude larger than historical events. Large eruptions, especially
explosive events that penetrate the stratosphere, have the largest impact on climate. With the
advent of TOMS, we have a good understanding of volcanic climate forcing by explosive
eruptions in the past two decades. But we still need a better understanding of the climate

implications for much larger prehistoric eruptions.
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